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Synthesis of Vector Parasites in Finite
Element Maxwell Solutions

Daniel R. Lynch, Keith D. Paulsen, and William E. Boyse

Abstraci— Closed-form solutions to driven boundary value
problems are obtained for the discrete finite element forms of
the double-curl, penalty, and Helmholtz equations, as realized on
simple C° bilinear elements. The solutions are expressed as a
composite of physical and spurious vector modes, and are quali-
tatively similar to numerical solutions reported on more complex
geometries. The findings reveal the critical role of discrete bound-
ary conditions in determining the strength of the spurious modes;
the overall superiority of the Helmholtz weak form; and the
importance of proper boundary conditions for its successful use.
In particular, one blend of normal and tangential conditions
which appears well-posed is shown to be inappropriate; and a
simple alternative is shown to work well.

1. INTRODUCTION

HE occurrence of spurious vector modes in finite element

solutions to Maxwell’s equations has been reported for
over 20 years [4], [5], and is still a topic of considerable
interest today (e.g., [2], [6]), and [1]). Their elusive but occa-
sionally overwhelming presence has significantly inhibited the
electromagnetic application of the FEM. In particular, vector
applications using conventional, scalar FEM bases (e.g., C°
linear elements) have been especially vulnerable. Since these
bases are of considerable practical importance, the control of
vector parasites remains a major concern [9], [3].

In a previous paper [7], we introduced dispersion analysis
of the discretized equations as a tool in the diagnosis and
design of numerical methods. This analysis treats an infinite
2-D lattice of square bilinear elements, and exposes the modal
structure of the discrete solution. Spurious vector modes of
3 types are readily identifiable in various discretizations. Anal-
ysis of the mode properties (e.g., their divergence and curl)
supports conclusions about the presence of parasites in driven
problems. The role of boundary conditions is highlighted in the
synthesis of physical and spurious modes, relying on general
arguments. However, the actual discrete equations used at
a mesh termination, and the details of boundary condition
enforcement, have not been analyzed.

Our purpose here is to examine in detail the discrete bound-
ary conditions and the various options for their enforcement on
finite grids. This allows the expression of closed-form discrete
solutions to driven boundary-value problems on a finite mesh.
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Fig. 1. The Type I problem. Dirichlet conditions are enforced on tangential
E; natural normal conditions.

Of course, the solutions are restricted to simple geometry;
but the analysis clarifies the role of boundary conditions in
dictating the final synthesis of spurious and physical modes in
the driven solution.

II. ANALYTIC SOLUTIONS
We employ two simple test cases with E in the (zy) plane.
Both are governed by the source-free Maxwell equations
V x E =iwpH
V x H = —iweE .

¢))
@

In the first problem, boundary conditions are prescribed on
tangential E, as in Fig. 1. We refer to these as “Type I”
boundary conditions relative to E. In the second case, Fig. 2,
conditions are prescribed on tangential H, which are converted
into “Type 1I” conditions on E, specifically,

nxVxE=iwpnxH €)]

and (optionally)

’fl*E:—,i‘fL-VXH

@
both of which may be computed from the specified 7 x H.
Use of (3) alone or in conjunction with V - E = 0 will be
referred to as “Type Ila;” use of (3) and (4) will be referred
to as “Type IIb.”

We seek solutions of the form

{Ez(xa y) } _ { Eqo }ei(om+'yy) . 5)

Ey (xv y) E?IO

With « and w given, the dispersion relation gives
o=+Vk2 -2 (6)
k2 = w?pe. @)
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Fig. 2. (a) The Type II problem with all natural boundary conditions. (b)
The Type II problem with the same natural tangential conditions but with
Dirichlet normal conditions.

The condition V- E = 0 also provides the modal information
-

EiEO
=, 8
= ®

f

The solution is then a synthesis of forward-and backward-
traveling waves

E at fl a” [(—=f1 .,
L iloztyy) L 2 i(cx—vy)
{af-s e ()
'6+ —f i(—oztyy) ﬂ— f i(—ocx—vy)
TS5V 0 (¢ +5 e .
)

Type I Problem: The top and bottom boundary conditions
require ¥ = o~ and 8+ = ~; solution then condenses to
trigonometric modes

{Ez } _ aeww{ifsin’yy} -|-,Be""wz{ —ifsin'yy} .
E, COS VY €OS VY
(10)

Finally, application of the left and right boundary conditions
on E, gives
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which, for nonsingular conditions, gives a unique solution
for the forward-and backward-propagating wave amplitudes o
and S.

Type 1i Problem: Applying top and bottom conditions to
(9) requires at = —a~ and Bt = —37; this solution then
condenses to the alternate trigonometric modes

{Ew} — aew‘a:{ fCOS")’y} + ﬁe—zam{ ""f.COS’)’y} (12)
B, 1 sin yy 1Sinyy

and the left and right conditions on E, then determine «
-f

and
f ol 1
|:fei0'L29 _fe—w'Lz:l{ﬂ} - {O}

Because of their natural utility, we identify modes of the form
(10) as “Type I” trigonometric modes, and those of form (12)
as “Type IL.”

(13)

III. DIFFERENCE EQUATIONS

We consider the so-called “penalty” form of the Maxwell
equations, for constant coefficients

Vx(VXE)-pV(V-E)—KE=0 (14)

and the associated weak form [9], [3]
(VX E) x V) + p((V - E)V;) — (K* E¢y)
= —j[ﬁ,x (V x E)¢ids+pfﬁV-E¢lds @15)

in which () is the domain integral, ¢ ds is the integral on the
enclosing surface, and ¢;(x,y) is a scalar weighting function.
For p = 0, we have the conventional double-curl equation;
p = 1 gives the “expanded weak form” advocated by Paulsen
and Lynch [9] and Boyse et al [3]. On the interior, the
latter is identical to the Helmholtz weak form for the scalar
components of E individually.

We examine the discrete from of (15) which would be
realized on a uniform grid of square bilinear elements using
the Galerkin method.

Interior Conditions: For all interior ¢;, the difference ex-

pressions developed previously in |7, Table I and equation
(20)] apply. For exponential solutions of the form (5), these
interior difference equations take the form (16) below.
(The discretization factors A, B, C defined in [7] are repeated
here in Table II for convenience. Note that each of these
factors approaches unity with mesh refinement.) All interior
equations (16) are satisfied simultaneously by satisfaction of
the dispersion relation

o b ]G5t
wl, —icl, =
eole e B 0 (k* — pr®) (K* — &%) + (1 —p)? =0 (17a)
AgC2iy? + pA,C20% — A AyK? —(1=p)ByB;vo By _ [0 (16)
—(1—p)ByByovy AyC20” + pA,C2v* — A, AyK? | | E, 0
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TABLE [
DIFFERENCE OPERATORS AND EQUATIONS AT A MESH BOUNDARY

y Al

(i)

\NNNNNNNNNNNSNS

—¥x

<>

h2

Uy =041 = U,y

22l X B) x Vo) + 1(- E)V,) - (¢ Es)] = Pﬁ

.
581 paa
2h h 2h

a1 — 20U + ULy

1 _ k2 or P
x = 3 SISy - ﬁAzsy

2 )
—48 Sy — & 5u8, - gy s | B

first centered difference
second centered difference

82U, =
Axy . ; =Up1,;,=-U,, first forward difference
SyUsj; = 4+ (Ui j41 +4U, , + U, ;—1) Simpson’s rule average
SLU, = ¥ L (Ui1,; +2U73)) forward average
SiU, = 2 Uagr,, + Usy) forward average
with As in [7], we identify *o; as the spurious modes, and Ho3
,  C22 C242 as the nearly correct physical modes.
K== Y (17b) For the special case p = 1 (Helmholtz equation), the two
4 Ay dispersion surfaces merge, and f is undefined by the interior
o o of C2C2 B2B? equations. There are thus only four exponential modes, but
€ =07 ,'4:71; - Zg}[i (7€) each has two degrees of freedom, i.e., E, and E, are uncou-
Y pled. For compatibility with (19a), these may be expressed
From (16) we also have the modal characteristic as
_E, (1 —p)ByByvyo {E’”} — ﬂ {fi} Woz+yy) _|_ { ~fa }ei(vw—vy)
[ = F, = 002 1 pA,C20? — A, A R2 By o2 A1) 2
| 4,C20% 4+ pACIY — A AR - . %{ {B } itormim {fﬁ }ez(—az-—m

(1 —p)B,Byoy

Equations (17) and (18) completely describe the solution to
(16). There are no other requirements imposed by the interior
difference equations. (For p = 1, f remains undefined by (16).
It is determined by the boundary conditions; see below.)

The discrete dispersion relation (17) allows two values
02,03 for each combination of k2 and 2, as developed in [7].
Each supports a solution analogous to (9). The general solution
is therefore the superposition of 8 exponential modes

+ -
E; — Q. fi ei(o'lw—i—'yy) + Qy _fl ei(alm—'yy)
B, JT 21 2
{ -f1 } i(—o1z+7Y) + 0L ﬁl { fi }ei(——alm—'yy)
2 1
f2 z(o’gac—l—’yy) fZ i(o2e—~y)
1 5 ¢

(19a)

fz} w(—oratry) 4 Pa {fz }ei(_gzw_w) '
1 1

(19b)

with 8 unknowns a, 3, f.

Boundary Conditions: At boundaries, (16) does not govern
Rather, one-sided difference equations are enforced, as dis-
played in Table I. Unlike their centered homogeneous counter-
parts on the mesh interior, these ate in general inhomogenous,
with the boundary integral terms driving and/or correcting the
one-sided differences.

A special feature of the boundary difference equations
is their transparency to certain select trigonometric modes.
Consider the various one-sided difference opetators in Table L
For a solution which is symmetric across the boundary, we
have the following identities among the forward and centered
difference operators:

§'=S, and 24, =62
and for a function which is antisymmetric, we have
1
A, =285 = ) b -
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Now consider the normal (z) equation in Table I, in homoge-
neous form. A solution of the form

E,\| _
{1
reduces this equation, term by term, to its centered counterpart
on the interior of the mesh. (For the latter, see [7, equation (20)
and Table 1]). Solutions with this symmetry which satisfy the
interior equations therefore automatically satisfy the homoge-
neous form of this boundary equation— it adds no additional
constraints. It is as if the mesh boundary were not present at
all. We refer to this property as “transparency” of a boundary
condition to a particular mode. (Note that the y-equation is
not transparent to this mode.)

Generalizing to normal, tangential coordinates (n,s), we
have

U(y) cos az
V(y) sin bz

* the discrete normal BC is transparent to modes of the

)

The same reasoning with the y-equation in Table I leads to
the dual conclusion

En
Es

U(s)cosan
V(s)sinbn

+ the discrete tangential BC is transparent to modes of the

R )

These properties will be important in the mode synthesis
below.

For general exponential solutions of the form (5), we
define the one-sided discretization factors A’, A*, B’, as in
Table II. Like their interior counterparts, each of these factors
approaches unity with mesh refinement. Using these, we

Er
Es

U(s)sinan
V(s) cosbn
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TABLE II
DISCRETIZATION FACTORS FOR SOLUTIONS OF EXPONENTIAL
ForM U ~ €(°=+7%) Note THAT ALL A, B,
AND (' FACTORS APPROACH UNITY AS h — 0

— 4+2 h — 24eoh
Ay = B Al = 530h
— si h — 14e®
B, = #27* A% = —+62
— sinoh/2 ' = etoh
Cx = oh/2 BT - woh ,
_ wohB
82U,
yYu 2.2
2 =TT,
by U,
7 .
= yB,U,
ah TOylay
AU, ,
Y = i BLU;;

transform the boundary conditions at the left end of the mesh
and obtain equation (20a) below. The summation in (20a) is
over all exponential modes!, and highlights the role of the
boundary conditions in ultimate mode synthesis. Analogous
relations obtain at the other boundaries—for example, at the
bottom boundary we have equation (20b) below. These will
be further modified by the imposition of various boundary
conditions, as discussed next. For a given problem, then,
we have the general solution (19), subject to (20) rotated
and modified appropriately on the four boundaries. These
completely determine the discrete solution.

1When summing over trigonometric modes, care must be exercised to break
them into their component exponentials and then reassemble. An alternate,
equivalent summation may be made over the trignometric modes per se. In
this case, the product 4 cos vy produces vi sin vy, and vice versa.

S [ § A3 = BioBLA, — AL A K iYBy (% 0B, - £ A3) ] {E}
l iyBy(+ Ay — £ 0B,) 5 ALCoY? — §ioBLAy — 5 AL AR | By |,
L [pf (% G )guds (208)
_ . (20a
2 SE.
h f(awy—aaEy”)@ds
S[FAC AR en(hsog ()
1 me( 5’YBy - WAy ) 3 Awa - FWByAm ) AyAwk 1 E, 1
8E,  OE
1 —f( e )"5@‘15
__1 v . (20b)
h? pf(aaE; +6§;y >¢zds
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IV. MODE SYNTHESIS—-TYPE I PROBLEM

In the Type I case, the tangential component of (20) would
be discarded in favor of direct specification of E - ¢'; and
V - E = 0 would be set to zero in the boundary integral.
On the left boundary, this gives equation (21a) (below); and
on the bottom boundary, equation (21b) (below). The top and
bottom BC’s are exactly satisfied by reduction of the general
solution (19a) to Type I trigonometric modes as in (10)

{Em } — aleialac{ Zfl sinyy} + ﬂle—ialm{ ——ifl Sin’Vy }
E, cosYY cosYY
oyl { if2sinyy } } Byemivsa { —ifasinqyy } '
cos Y cos vy
22

In fact, each of these four modes independently satisfies the
top and bottom conditions, despite the one-sidedness of the
difference equations. For the tangential (z) component of
(21b), this is obvious—the Dirichlet condition is effectively
transparent to these modes. For the normal (y) component, its
transparency to Type I modes has been established above. The
BC’s are not, however, transparent to Type II modes, and as
a consequence their net effect is to eliminate these unwanted
Type I modes. These BC’s at top and bottom are therefore per-
fectly invisible, ideal mesh terminations for this problem. They
do not, however, discriminate between physical and spurious
Type I modes. The critical determinants of physical/spurious
mode synthesis in this problem are therefore the left and right
BC’s.
It is useful to consider only the forward-propagating modes

{‘gﬁﬂ} — aleiolm{ifl Sll’l”yy} +a26102z{if251n’7y}
Yy

cosYY cosYY
| 23)
and enforce only the left BC (21a). For E,, we have
a1 t+az=1 24)

and clearly either mode would suffice in isolation. However,
neither of the modes alone will satisfy the z-component
of (21a). For example, substitution of mode 2 alone would
require

. 1
€7 ( —; A0 - 2ioBla, ~ 5 A;Aykz)
2

h
+(f2 = fo)isiny =0
(25a)
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with f} being the mode shape preferred by the boundary
equation (21a) for Type I modes

-

Equation (25a) cannot be satisfied as it stands: f3 # fa for
any finite mesh. Unlike the top and bottom BC’s, we have an
inherent clash between the interior and boundary equations.
As a result, both modes must be blended to meet the left BC

LA, C2 = ZioB A, - LA AR ) T
(25b)

1
[ozle“’“c ( % ALCEy? - % ioBLA, — 3 A;Ayk2>

1

~Lispa, -

+ agew?” ( A;Cg’)’z A

1
—ALA k2)
2 v,

(fa—f4 ]z sinyy = 0 (26)

evaluated at x = 0. The final modal mix is then

o __(BACN — ioBdy A4, = 1)

o (A0 - FioBLA, — 5 AL AR, (fi - fi)
27

For p = 0, this reduces to
a1 _ (45)(f2 = f3) (28)

wh(fi— f1)

which is a remarkably simple result for the relative strength
of the parasite! To the extent that f — f’ is o(oh), the mode
with smaller |o| will dominate.

Examination of the dispersion curves in [7, Fig. 6] shows
clearly that under some circumstances |oq| (the parasite) is
comparable to or smaller than |o3]. Fig. 3 displays (28) as a
function of (vh)? for fixed values of (kh)2, which reveals
that the parasitic mode can indeed dominate the solution for
well-resolved meshes.? A visually dramatic example of the
effect of the parasite is shown in Fig. 4 where (kh)? = 0.001
and (vh)2 = 0.0987, which yields an «;/ay ratio near
unity. For these parameters, the p = 0 modal solution has

(A

ZRecall that the 10 nodes/wavelength cutoff corresponds to (kh)2
(vh)? values of 0.4; see [7, Fig. 1].

3 [ 1 ALC2y? - 2ioBLA, — + ALAK® ivBy(50B,— % A;)] {Em} _ { 0 } (21a)
; 0 1 LBy ), cos Yy
3 iom (51 ° e e
l ioB, (LB, — 2 AY) L+ A, C20% — LiyB A, — 5 A AK? | Ey f, 0
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Fig. 3. Relative strength of the spurious mode for the p = 0 Type I problem.
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Fig. 4. Vector plot of the Real (top) and Imaginary (bottom) parts of the
p = 0 Type I problem solution when (kh)? = 0.001 and (vh)% = 0.0987.

a1 = 0.4517, o1h = 0.3455, fi = 1.102, and oy = 0.5483,
ooh = 10.3165, fo = ¢1.0092 in (23)—the solution plotted
in Figure 4—whereas the analytic result requires o = 1.0,
oh = 10.3126, and f = ¢1.005.

Clearly the p = 0 physical mode is attempting to mimic
its analytic counterpart in that it has nearly correct dis-
persion relation and modal characteristic. Unfortunately, it
only comprises about half of the total solution with the
other component having completely erroneous propagation
and modal characteristics. Fig. 4 is reminiscent of the types
of solutions shown by Paulsen and Lynch [9] for more
complex heterogeneous problems. Further, Fig. 3 confirms the
observations in [7] that when p = 0, the spurious solution size
generally persists with mesh refinement.
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Fig. 5. Relative error in f for the p = 1 Type I problem.

Fig. 6. Same as Fig. 4 for p = 1. The Real part is shown; the Imaginary
part is zero.

When p = 1, f; and fo are undefined by the interior
equations and the two dispersion surfaces merge. In this case,
the BC’s determine both f and o (equivalently, E, and E,)
for each of the four modes in (19b). In the Type I problem, a
single composite Type I mode of the form

| _ geice ] 8/ 507Y
E, cos Yy
exactly satisfies the top and bottom BC’s for arbitrary f and
a. The left BC [equation (21a)] determines both « and f

(30)
G

(29

a=1
iyB
f= :

L A7 (C2y2 — Ayk?) —ioBLA,

This is an approximation which converges to the exact
divergence-free solution f = —v/o. .

As a measure of fidelity for the p = 1 case, Fig. 5 is
presented which shows the relative error in (31) with respect
to the analytic f as (vh)? varies for fixed values of (kh)2.
Fig. 6 shows the discrete solution when p = 1 for the same
set of (vh)? and (kh)? values used in Fig. 4. In this case,
oh = i0.3152 and f = 10.9968 in (29). The quality of the
p = 1 solution is clear: ¢ and f are in error by less than 1%
relative to their correct values. Comparison of Fig. 6, which
is essentially a rendering of the analytic solution, to Fig. 4
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provides indisputable evidence of the fatal weakness of the
double-curl solution and adds further credibility to the strength
of Helmholtz weak forms.

V. MODE SYNTHESIS—TYPE II PROBLEM

In the Type Ila case, we have all natural conditions as in
(20). In the Type IIb case, F - 7 is specified strongly, and the
normal equation discarded. The latter case is simpler and we
consider it first.

Type IIb: The Type IIb boundary equations are given in
equation (32) (below) for left (a) and bottom (b) cases.
Analogous to the Type I problem, the bottom and top BC’s
are satisfied exactly with Type II trigonometric modes

ficosvy - COS’YZU}

{Ew}: aleiolx{ e }+ﬂle—ialw{ L
1sin vy 18in yy

Ey
n aQeiagw{ focosyy } N ﬁ2e_i"2””{ —f2c08vY
(33)

isinyy i sinvyy

Further, each of these modes independently satisfies the top
and bottom BC’s, by virtue of tangential transparency and the
Dirichlet condition on the normal field. Finally, these BC’s
demand the vanishing of the Type I modes. The top and bottom
BC’s are therefore perfect mesh terminations; they exert no
additional influence on Type II modes and cancel all Type I
modes. The blend of physical and spurious Type I modes is
left undetermined.

Proceeding as in the Type I problem, we synthesize the
solution for forward-propagating waves by enforcing the left
BC. We define f” as the mode shape preferred by the
tangential (y) equation at the left (32a)
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Solution of (35) provides the relative strength of the parasite.
For p = 0, it is

ﬂ _ (A;kc)2(f2 - )_ f i ,;22 ‘ (36)
oy (Az),(Fi— ) — f1 e

Fig. 7 shows this ratio as a function of (vh)? for well-
resolved (kh)? values. Interestingly, it remains rather small
~ over the full range of reasonably resolved (vh)2. As a re-
sult, the spurious mode does not play a dominant role in
determining the total solution for the Type IIb problem of
Fig. 2(b). Fig. 8 and 9 show vector plots of the physical
and spurious modes separately when (kh)? = 0.001 and
(vh)? = 0.0987. Fig. 8 (the physical mode) is an excellent
representation of the analytic solution having the same nearly
correct values of o2 and f> as in the Type I problem with «; fo
nearly unity, whereas Fig. 9 (the parasite) displays the classical
erroneous divergence-type behavior. It should be noted that the
scale of the solution in Fig. 9 is magnified 200 times relative
to Fig. 8 reflecting the small size of «; compared to ws.
While Fig. 9 represents a small portion of the total solution
near the left boundary, the physical mode decays; thus, the
propagating spurious mode does become the total discrete
solution a few mesh lengths away. Further, it has both real and
imaginary components, whereas the analytic solution (and the
physical discrete mode) is entirely real. Finally, this parasite
propagates without decay to the right boundary, no matter how
far removed electrically. This introduces an additional non-
local BC on a physically local phenomena, and introduces the
possibility of spurious mode resonance. These are unwanted
properties which can be eliminated when p = 1 as shown
below.

. For the special case p = 1, a single Type II mode suffices
f” _ % A;CZWZ - _}1{ ZGB;Ay - % A;Aykz 34 P P & P
a By (L Ax - 25B)) G4

YO\ 7 A = 3952 {Ex}_ m{fcoswy} 37

and obtain equation (35) (below) for the mode strengths. Ey isinyy
Z 1 0 E. |l cosYY (322)

l iyBy(+ AL — 20oBy,) £ ALCE +io0BLAy — 5 ALAK? |\ E, [, — =5 Ayk?sinyy
Z AlC20% — LiyBl Ay — 5 AL Ak? 0By (+ Ay —%4B;) ] [E. _J0 (32b)
1 LBy of ‘
1
[ i T ] {"‘1 } =0 (35)
iyBy(+ Az — BoBL) (fi— f1) ivBy(% 45 — %0B,),(f2 = ) | | ez L Ayk?
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005 0.1 0.15 02 0.25 03 035 04

(vh)?

o

Fig. 7. Relative strength of the spurious mode for the p = 0 Type IIb

problem.

Fig. 8. Vector plot of the physical mode alone for the p = 0 Type Ilb
problem when (kh)? = 0.001 and (vh)? = 0.0987.

Fig. 9. Same as Fig. 8 for the spurious mode alone: Real part (top);
Imaginary part (bottom). Scale is 200 times that of Fig. 8.

with o and f both determined by the left BC’s (32a)

af =1 (382)
—= Ayk® + 7B,

h AL(C2y2 — Ayk?) —ioBLA,

o=

(38b)
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Fig. 10. Relative error in f for the p = 1 Type IIb problem.
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Fig. 11. Vector plot of the p = 1 Type IIb problem solution when

(kh)? = 0.001 and (vh)? = 0.0987. The Real part is shown; the Imaginary
part is zero.

Use of the dispersion relation k?> = C20?/A, + C2v%/A, and
rearrangement gives
by AL (C242 — Ayk?) + yoBLA,

T AT )

(38¢c)

which approaches the exact value —v/¢ with mesh refinement.

As before, the relative error in (38c) with respect to the
analytic f is taken as a measure of accuracy of the discrete
solution when p = 1. This benchmark is plotted in Fig. 10 as
a function of (vh)? when (kh)? is fixed as done previously.
Again, the discrete solution is faithful to the analytic, showing
errors in the modal characteristic of less than 1% even for
marginally resolved values of (vh)? in a fashion very similar
to the Type I problem. A vector plot of the p = 1 solution
for the case shown in Fig. 8 and 9 is provided in Fig. 11. The
computed results agree to better than 1% with the analytic
solution for this specific parameter set.

Type Ila: In this case, we abandon the Dirichlet conditions
on the normal field and retain the one-sided approximations to
the normal Maxwell equations. To begin with, we apply this
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Fig. 12. Same as Fig. 4 for the Type Ila problem when p = 0.

at the left boundary only, obtaining equation (39a), below;
and retain the previous Type IIb BC’s at the bottom. These
are perfect BC’s for both physical and spurious Type II
trigonometric modes.

The normal (z) equation at the left is identical to that
enforced in the Type I problem. Hence, the blend of physical
and spurious modes expressed in (27) is exactly the same!
Thus, the a1 /ag ratio shown in Fig. 3 pertains to both Type I
and Type Ila problems. The actual o values dictated by the two
problems, however, are different. Fig. 12 shows the p = 0
Type Ila problem solution for the same set of (vh)2 and
(kh)? parameters used in Fig. 4. The parasitic mode is again
a significant fraction of the total solution having grossly
erroneous behavior similar to Fig. 4, but with different local
details.

For the special case p = 1, a single mode of the form (37)
is sufficient, and the normal (z) equation demands the same
relation for f as in the Type I problem, equation (31) which
has the same accuracy shown in Fig. 5. The tangential BC on
the left gives o

— v
O By + L AL (Coy? — AR —ioBLA, (40

The product «f is unity for the analytic solution. Fig. 13
reveals that (40) can be a gross distortion of this feature at
reasonable resolution. The left BC’s in this case are singular
for certain combinations of k? and ~2, at which point af
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Fig. 14. Same as Fig. 11 except Type Ila BC’s are enforced on the left.

goes to infinity. For larger 72, af becomes negative and the
field is wrong in both magnitude and direction. For complex
problems, this is a particularly bad feature, since the basic
waveform has the correct dispersion relation and mode shape
f. Fig. 14 displays the p = 1 solution for the case reported in
Fig. 11, illustrating this point. Here, af = —1.5788.

Finally, consider the Type Ila BC at the bottom, equation
(39b) below.
The tangential (z) equation is transparent to the Type II
trigonometric modes as above; it serves only to constrain the
ratio E,/E, for the Type I modes (which are required by
the left BC to vanish). The normal (y) equation is critical.

[ L ALC2y2 — 2Bl A, — L ALAR?
1

iBy( 0B, — £ A7)

Lmd{ s
-+ ALAK? |\ Ey S, —,Y—lhAykzsin'yy

ivBy (L A: — 204B)) L ALC2H? — +iocBA,
(39a)
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It is transparent to the Type I modes, and overconstrains the
Type II modes. Specifically, it requires that both physical and
spurious modes independently satisfy a mode shape require-
ment f}” which is incompatible with the interior equations.
For p = 0 and after some manipulation®, this is

4 [ B,(C20% — A,k?)
6 B,ovC?

T (1)

for both 7 = 1,2. But this conflicts with the interior equa-
tions which have already determined f; and fo. Each mode
therefore demands an additional parasite (o1,71) and (o2, 72)
in addition to the original parasite (o1,) and the physical
mode (o2,7). These will be blended to meet the bottom
BC’s in a manner analogous to that used at the left. Further,
the additional spurious v; and 7, in the system will create
imbalances in the left BC’s; each will demand an additional
parasitic mode; and so on. This basic conflict between f” and
f is not improved with mesh refinement; for p = 0, we have

fr_4 B
fi 6 C’;Ay

(42)

which converges to 4/6. We see no simple closure of this
broadening spectrum of parasites.

For the case p = 1, the normial equation at the bottom can
be seen to be in direct conflict with the normal equation at the
left. For a Type II mode of the form (37), we have

_2By (12 (C20? — A k?)

= — 4,
0B, 6

f (43)

This is different from and incompatible with (31) which results
from the left normal BC, except in the limit of small /» where
both converge to the same analytic value. For a finite mesh,
therefore, we find no solution for p = 1 with Type IIa BC’s.

VI. DISCUSSION

We have analyzed in detail the imposition of boundary
conditions on discrete finite element equations at mesh termi-
nations. Coupling these with previously obtained dispersion
relations on the interior allows closed-form solutions for
driven boundary value problems on simple meshes. We have
concentrated on node-based, C° elements because of their
widespread use in other applications, and their well-known
ability to support spurious vector parasites.

Relative to double-curl formulations, we concluded in [7]
that spurious modes would necessarily be required to satisfy
physical boundary conditions. The present analysis confirms
this in detail and quantifies the strength of the parasite. The
examples shown are reminiscent of numerical results reported
in [9] for more complex geometries—demonstrating the power
and generality of the present idealized findings. Both Type 1
and Type Ila BC’s yield unambiguously poor results with the

3The mode summation for the bottom BC must be performed by breaking
the trigonometric modes into their exponential parts in order to accommodate
the one-sided discretization factors.
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double-curl form. The Type IIb condition, although seldom
used with the double-curl equation, retains the parasite even
though in the examples chosen here it is quite small. This
may represent a limited window of utility for the double-curl
method on C° elements.

By contrast, the Helmholtz solutions are of high quality
for Type I and IIb BC’s. These findings are consistent with
numerical experiments in [9] and in [8]. These papers deal
with two alternative Helmholtz forms which reduce to the
homogeneous form analyzed herein. In [3], we provide a very
general derivation of Helmholtz-like weak forms based in
gauge theory, which significantly broadens their foundation
and demonstrates the sufficiency of both Type I and IIb BC’s.

The Type Ila conditions should be avoided when using
the Helmholtz forms. This BC blend is shown herein to
overconstrain the Helmholtz system—effectively it demands
two slightly different and incompatible approximations to
V - E = 0. This finding is compatible with the compu-
tational experience reported in [9]. A reexamination of the
problematic cases presented therein (Fig. 5 and 6) reveals
very ill-conditioned system matrices with Type Ila BC’s; and
a condition number reduction of order 10% for Type IIb BC’s.

These analyses indicate that simple node-based finite ele-
ments are capable of supporting robust, high-quality solutions
to Maxwell’s equations, provided the Helmholtz-type weak
forms are used with appropriate boundary conditions.
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