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Synthesis of Vector Parasites in Finite

Element Maxwell Solutions
Daniel R. Lynch, Keith D. Paulsen, and William E. Boyse

Abstract— Closed-form solutions to driven boundary value

problems are obtained for the discrete finite element forms of
the double-curl, penalty, and Helmholtz equations, as realized on
simple C“ bilinear elements. The solutions are expressed as a
composite of physical and spurious vector modes, and are quali-
tatively similar to numerical solutions reported on more complex
geometries. The findings reveal the critical role of discrete bound-
ary conditions in determining the strength of the spurious modes;

the overall superiority of the Helmholtz weak form; and the
importance of proper boundary conditions for its successful use.

In particular, one blend of normal and tangential conditions

which appears well-posed is shown to be inappropriate; and a

simple alternative is shown to work well.

I. INTRODUCTION

T HE occurrence of spurious vector modes in finite element

solutions to Maxwell’s equations has been reported for

over 20 years [4], [5], and is still a topic of considerable

interest today (e.g., [2], [6], and [1]). Their elusive but occa-

sionally overwhelming presence has significantly inhibited the

electromagnetic application of the FEM. In particular, vector

applications using conventional, scalar FEM bases (e.g., Co
linear elements) have been especially vulnerable. Since these

bases are of considerable practical importance, the control of

vector parasites remains a major concern [9], [3].

In a previous paper [7], we introduced dispersion analysis

of the discretized equations as a tool in the diagnosis and

design of numerical methods. This analysis treats an infinite

2-D lattice of square bilinear elements, and exposes the modal

structure of the discrete solution. Spurious vector modes of

3 types are readily identifiable in various discretizations. Artal-

ysis of the mode properties (e.g., their divergence and curl)

supports conclusions about the presence of parasites in driven

problems. The role of boundary conditions is highlighted in the

synthesis of physical and spurious modes, relying on general

arguments. However, the actual discrete equations used at

a mesh termination, and the details of boundary condition

enforcement, have not been analyzed.

Our purpose here is to examine in detail the discrete bound-

ary conditions and the various options for their enforcement on

finite grids. This allows the expression of closed-form discrete

solutions to driven boundary-value problems on a finite mesh.
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Fig. 1. The Type I problem. Dirichlet conditions are enforced on tangential
E: natural normal conditions.

Of course, the solutions are restricted to simple geometry;

but the analysis clarifies the role of boundary conditions, in

dictating the final synthesis of spurious and physical modes in

the driven solution.

II. ANALYTIC SOLUTIONS

We employ two simple test cases with E in the (zy) plame.

Both are governed by the source-free Maxwell equations

VxE=iwPH (1)

VxH=–iweE. (2)

In the first problem, boundary conditions are prescribed on

tangential E, as in Fig. 1. We refer to these as “Type I“

boundary conditions relative to E. In the second case, Fig. 2,

conditions are prescribed on tangential H, which are converted

into “Type II” conditions on E, specifically,

iix VxE=iwpnx H

and (optionally)

&E=-&LVx H
awe

(3)

(4)

both of which may be computed from the specified n x H.

Use of (3) alone or in conjunction with V . E = O will be
referred to as “Type IIa;” use of (3) and (4) will be referred

to as “Type IIb.”

We seek solutions of the form

{%[:::}={::}’’(””+7“)
With T and w given, the dispersion relation gives

~ . +J- (6)

k2 = Wzpe . (7)
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Fig. 2. (a) The Type H problem with all natural boundary conditions. (b)
The Type II problem with the same natural tangential conditions but with

Dirichlet normal conditions.

The condition V. E = O also provides the modal information

f+o=-~,
E yo o

(8)

The. solution is then a synthesis of forward-and backward-

traveling waves

{:}=: {:}’’(U”+7Y)+={-:}’’(-’Y)
{} {}+I –f ‘i(-m+.y) + : f ‘i(-cxqy) .

21 1

(9)

Type I Problem: The top and bottom boundary conditions

require a+ = a– and @+ = /3–; solvtion then condenses to

trigonometric modes

{:}=”’’”’{’:%}+’’-2””{-::;7}
(lo)

Finally, application of the left and right boundary conditions

on Ey gives

[ ‘Z;LX‘J4{;}={:} “1)

which, for nonsingular conditions, gives a unique solution

for the forward-and backward-propagating wave amplitudes Q

and /3.

Type 11 Problem: Applying top and bottom conditions to

(9) requires a + = _ ~– and @ = –~–; this solution then

condenses to the alternate trigonometric modes

and the left and right conditions on Ez then determine a

and ~

‘[ fef iuLz -J4{;}={:}. ’13)
Because of their natural utility, we identify modes of the form

(10) as “Type I“ trigonometric modes, and those of form (12)

as “Type II.”

III. DIFFERENCE EQUATIONS

We consider the so-called “penalty” form of the Maxwell

equations, for constant coefficients

Vx(Vx E)–pV(V. E)–k2E=0 (14)

and the associated weak form [9], [3]

((V x E) x Y74.) +P((V . E)V@,) - (k2Eqb,)

in which ( ) is the domain integral, $ ds is the integral on the

enclosing surface, and #i (x, y) is a scalar weighting function.

For p = O, we have the conventional double-curl equation;

p = 1 gives the “expanded weak form” advocated by Paulsen

and Lynch [9] and Boyse et al. [3]. On the interior, the

latter is identical to the Helmholtz weak form for the scalar

components of E individually.

We examine the discrete from of (15) which would be

realized on a uniform grid of square bilinear elements using

the Galerkin method.

Interior Conditions: For all interior 4i, the difference ex-

pressions developed previously in [7, Table I and equation

(20)] apply. For exponential solutions of the form (5), these

interior difference equations take the form (16) below.

(The discretization factors A, 1?, C defined in [7] are repeated

here in Table H for convenience. Note that each of these
factors approaches unity with mesh refinement.) All interior

equations (16) are satisfied simultaneously by satisfaction of

the dispersion relation

(P -pK’) (k? - K2) + (1 -p)2,2 = o (17a)

[

AZC;T2 + pAyc;02 – AZAYk2 –(1 – p)l?yl?zyrr

-(1 – p)l?zl?ycq AyC~V2 + pAZC;T2 – AZAVk2 1{3}={:} (16)
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TABLE I
DIFFERENCE OPERATORSAND EQUATIONSAT A MESH BOUNDARY

t

YJ

r5vutJE 11,,2+1 – U%,J–I first centered difference

6;U,3 G U,$j+l– 211,,3 + UC,l–l second centered difference

AxU,,l G Uzhl,l – U,,j first forward difference

S’y Uij E -& (U;, j+l + 4U,,J + U,,j_l ) Simpson’s rule average

S~Ur,~ E ~ (U~+l,j + 2Cr~j) forward average

S;uzj ❑ + (U,+l,j + Uq) forward average

(17b)

From (16) we also have the modal characteristic

+= (1 – p)~yaw

A.C;T2 + PAYC:C2 – AZAYk2

A;C;~2 + pAZc;y2 – A$AVk2——
(1 - p) BJ3yq “

(18)

Equations (17) and (18) completely describe the solution to

(16). There are no other requirements imposed by the interior

difference equations. (For p = 1, f remains undefined by (16).

It is determined by the boundary conditions; see below.)

The discrete dispersion relation (17) allows two values

a:, m; for each combination of k2 and ~z, as developed in [7].

Each supports a solution analogous to (9). The general solution

is therefore the superposition of 8 exponential modes

{:}=${:}ei(”’’+’y)++{-f}ei(”’’-’y)
+fl

{} {}
–.fl ‘i(-olz+~y) + & fl ‘i(-a,.-’yy)

21 21

{} {}
+ Q fz #02~+7v) + ~ –p ‘~(d2~-7Y)

21

As in [7], we identify +01 as the spurious modes, and 4:c2

as the nearly correct physical modes.

For the special case p = 1 (Helmholtz equation), the two

dispersion surfaces merge, and ~ is undefined by the interior

equations. There are thus only four exponential modes, but

each fias two degrees of freedom, i.e., E. and Ey are uncou-

pled. For compatibility with (19a), these may be expressed

as

{:}=: {’:}e’(”’+’’)+~{-:}ei(”z-’y)
{1+~ -$ ‘+..+,,)+ ~ f; ‘i(.m.-.y)

21 {}21

(19b)

with 8 unknowns O, /3, f.
Boundary Conditions: At boundaries, (16) does not govern.

Rather, one-sided difference equations are enforced, as dis-

played in Table I. Unlike their centered homogeneous counter-

parts on the mesh interior, these ate in general inhomogenous,

with the boundary integral terms driving andlor correcting the

one-sided differences.

A special feature of the boundary difference equations

is their transparency to certain select trigonometric modes.

Consider the various one-sided difference operators in Table I.

For a solution which is symmetric across the boundary, we

have the following identities among the forward and centered

difference operators:

S: = Sx and 2AZ E 6:

+PJ
{1 {1

–f2 ~+o,.+-fy) + & fz ~i(-cmwv) , and for a function which is antisymmetric, we have

21 21

(19a)
AZE2S;G;SE.
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Now consider the normal (x) equation in Table I, in homoge-

neous form. A solution of the form

{2}={%=3
reduces this equation, term by term, to its centered counterpart

on the interior of the mesh. (For the latter, see [7, equation (20)

and Table l]). Solutions with this symmetry which satisfy the

interior equations therefore automatically satisfy the homoge-

neous form of this boundary equation— it adds no additional

constraints. It is as if the mesh boundary were not present at

all. We refer to this property as “transparency” of a boundary

condition to a particular mode. (Note that the y-equation is

not transparent to this mode.)

Generalizing to normal, tangential coordinates (n, s), we

have

● the discrete normal BC is transparent to modes of the

form

{3={%;=1
The same reasoning with the y-equation in Table I leads to

the dual conclusion

● the discrete tangential BC is transparent to modes of the

form

{:1={%:::}
These properties will be important in the mode synthesis

below.

For general exponential solutions of the form (5), we

define the one-sided discretization factors A’, A“, B’, as in

Table II. Like their interior counterparts, each of these factors

approaches unity with mesh refinement. Using these, we

TABLE II

DISCRETIZATION FACTORSFOR SOLUTIONSOF EXPONENTIAL

FORM U - eif”z+~v). NOTE THAT ALL A, B,
AND C FACTORS APPROACH UNITY AS h + O

transform the boundary conditions at the left end of the mesh

and obtain equation (20a) below. The summation in (20a) is

over all exponential modesl, and highlights the role of the

boundary conditions in ultimate mode synthesis. Analogous

relations obtain at the other boundaries—for example, at the

bottom boundary we have equation (20b) below. These will

be further modified by the imposition of various boundary

conditions, as discussed next. For a given problem, then,

we have the general solution (19), subject to (20) rotated

and modified appropriately on the four boundaries. These

completely determine the discrete solution.

1When summing over trigonometric modes, care must be exercised to break

them into their component exponential and then reassemble. Arr alternate,

equivalent summation may be made over the trigonometric modes per se. In
this case, the product ~ cos ~y produces + sin ~y, and vice versa.

1

-{

P$(*+~)f@
———

}

. (20a)

‘2 $(%-%)d~ds

1

‘{ }

-$(% -*)WS .(20b)
——

‘2 p$(~+~)$ds
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IV. MODE SYNTHESIS-TYPE I PROBLEM

In the Type I case, the tangential component of (20) would

be discarded in favor of direct specification of 13. t’;and

V . E = O would be set to zero in the boundary integral.

On the left boundary, this gives equation (21a) (below); and

on the bottom boundary, equation (21 b) (below). The top and

bottom BC’S are exactly satisfied by reduction of the general

solution (19a) to Type I trigonometric modes as in (10)

{:}= “ei”l’{’:::;y}+@’e-i”l’{-’::2}
(22)

with ~~ being the mode shape preferred by the boundary

equation (21a) for Type I modes

(2,5b)

Equation (25a) cannot be satisfied as it stands: ,fj # .fz for

any finite mesh. Unlike the top and bottom BC’S, we have an

inherent clash between the interior and boundary equations.

As a result, both modes must be blended to meet the left EIC

In fact, each of these four modes independently satisfies the

top and bottom conditions, despite the one-sidedness of the

difference equations. For the tangential (x) component of

(21b), this is obvious—the Dirichlet condition is effectively

transparent to these modes. For the normal (g) component, its

transparency to Type I modes has been established above. The

BC’S are not, however, transparent to Type II modes, and as

a consequence their net effect is to eliminate these unwanted

Type II modes. These BC’S at top and bottom are therefore per-

fectly invisible, ideal mesh terminations for this problem. They

do not, however, discriminate between physical and spurious

Type I modes. The critical determinants of physicallspurious

mode synthesis in this problem are therefore the left and right

BC ‘S.

It is useful to consider only the forward-propagating modes

{:l=~’’’ulx{i::;iyl+’’u2z{i::;:y~3,3,
and enforce only the left BC (21a). For Eg, we have

cll+c17. =1 (24)

and clearly either mode would suffice in isolation. However,

neither of the modes alone will satisfy the x-component

of (21a). For example, substitution of mode 2 alone would

require

~ (f2 – fj)isin% = O

(25a)

“ (fl - f;)

1.( f2-fj) isin7y=0 (26)

evaluated at z = O. The final modal mix is then

For p = O, this reduces to

al (A~)2(,f2 - fi)—— —
0!, ‘(AL)JfI - f{)

(28)

which is a remarkably simple result for the relative strength

of the parasite! To the extent that f – f‘ is o(ah), the mode

with smaller Io I will dominate.

Examination of the dispersion curves in [7, Fig. 6] shows

clearly that under some circumstances Iol I (the parasite) is

comparable to or smaller than 102\. Fig. 3 displays (28) as a

function of (Th)’ for fixed values of (kh)2, which reveals

that the parasitic mode can indeed dominate the solution for

well-resolved meshes.z A visually dramatic example of the

effect of the parasite is shown in Fig. 4 where (kh)2 = 0.001

and (-Yh)2 = 0.0987, which yields an CX1/a2 ratio near

unity. For these parameters, the p = O modal solution has

2Recall that the 10 nodes/wavelength cutoff corresponds to (M )2 and

(Yh)z values of 0.4; see [7, Fig. 1].

(21b)
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Fig. 3. Relative strength of the spurious mode for the p = O Type I problem. Fig. 5. Relative error in j for the p = 1 Type I problem.

l\
\h Fig.6. Same as Fig. 4forp = 1. The Real part isshowq the Imaginary

part is zero.

.1 I ,1 When p = 1, ,fl and fz are undefined by the interior

equations and the two dispersion surfaces merge. In this case,

the BC’sdetermine both fanda (equivalently,13z andl?v)

for each of the four modes in(19b). In the Type Iproblem, a

single composite Type I mode of the form

{2}=”’’0’{’:2}(29)

exactly satisfies the top and bottom BC’S for arbitrary f and

a. The left BC [equation (21a)] determines bothcz and f

Fig. 4. Vector plot of thelleal (top) and Imaginary (bottom) parts of the
p= OType Iproblem sohrtionwhen(kh)2 =0.001 and(~h)2 =0.0987.

al = 0.4517, olh= 0.3455, fl = 1.102, and a2 = 0.5483,

rr2h = iO.3165, fz = il.0092 in (23)—the solution plotted

in Figure 4—whereas the analytic result requires Q = 1.0,

oh = iO.3126, and f = il.005.

Clearly the p = O physical mode is attempting to mimic

its analytic counterpart in that it has nearly correct dis-

persion relation and modal characteristic. Unfortunately, it

only comprises about half of the total solution with the

other component having completely erroneous propagation

and modal characteristics. Fig. 4 is reminiscent of the types

of solutions shown by Paulsen and Lynch [9] for more

complex heterogeneous problems. Further, Fig. 3 confirms the

observations in [7] that when p = O, the spurious solution size

generally persists with mesh refinement.

This is an approximation which converges to the exact

divergence-free solution f = –T/o.

As a measure of fidelity for the p = 1 case, Fig. 5 is

presented which shows the relative error in (31) with respect

to the analytic f as (-yh)2 varies for fixed values of (kh)2.

Fig. 6 shows the discrete solution when p = 1 for the same

set of (~h)2 and (kh) 2 values used in Fig. 4. In this case,

ah = iO.3152 and f = iO.9968 in (29). The quality of the

p = 1 solution is clear: o and f are in error by less than 1%

relative to their correct values. Comparison of Fig. 6, which

is essentially a rendering of the analytic solution, to Fig. 4. .
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provides indisputable evidence of the fatal weakness of the

double-curl solution and adds further credibility to the strength

of Helmholtz weak forms.

V. MODE SYNTHESIS—--TYPE II PROBLEM

In the Type IIa case, we have all natural conditions as in

(20). In the Type IIb case, E . ii is specified strongly, and the

normal equation discarded. The latter case is simpler and we

consider it first.

Type IIb: The Type IIb boundary equations are given in

equation (32) (below) for left (a) and bottom (b) cases.

Analogous to the Type I problem, the bottom and top BC’S

are satisfied exactly with Type II trigonometric modes

{:}= “eio’’{:=;}+”’e-i”’x{-fi:;?}
‘“2’’”2’{:::I+B2’-’”2’{-::Y}

(33)

Further, each of these modes independently satisfies the top

and bottom BC’S, by virtue of tangential transparency and the

Dirichlet condition on the normal field. Finally, these BC’S

demand the vanishing of the Type I modes. The top and bottom

BC’S are therefore perfect mesh terminations; they exert no

additional influence on Type II modes and cancel all Type I

modes. The blend of physical and spurious Type II modes is

left undetermined.

Proceeding as in the Type I problem, we synthesize the

solution for forward-propagating waves by enforcing the left

BC. We define ~“ as the mode shape preferred by the

tangential (y) equation at the left (32a)

and obtain equation (35) (below) for the mode strengths.

Solution of (35) provides the relative strength of the parasite.

For p = O, it is

Fig. 7 shows this ratio as a function of (Th)2 for well-

resolved (kh) 2 values. Interestingly, it remains rather small

over the full range of reasonably resolved (Th)2. As a re-

sult, the spurious mode does not play a dominant role in

determining the total solution for the Type IIb problem of

Fig. 2(b). Fig. 8 and 9 show vector plots of the physical

and spurious modes separately when (kh)’ = 0.001 and

(Th,)2 = 0.0987. Fig. 8 (the physical mode) is an excellent

representation of the analytic solution having the same nearly

correct values of U2 and f2 as in the Type I problem with cy2f2

nearly unity, whereas Fig. 9 (the parasite) displays the classical

erroneous divergence-type behavior. It should be noted that the

scale of the solution in Fig. 9 is magnified 200 times relative

to Fig. 8 reflecting the small size of al compared to a2.

While Fig. 9 represents a small portion of the total solution

near the left boundary, the physical mode decays; thus, the

propagating spurious mode does become the total discrete

solution a few mesh lengths away. Further, it has both real iirid

imaginary components, whereas the analytic solution (and the

physical discrete mode) is entirely real. Finally, this parasite

propagates without decay to the right boundary, no matter how

far removed electrically. This introduces an additional non-

local BC on a physically local phenomena, and introduces the

possibility of spurious mode resonance. These are unwanted

properties which can be eliminated when p = 1 as shown

below.

For the special case p = 1, a single Type II mode suffices

(37)

(3:2b)
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Fig. 8. Vector plot of the physical mode alone for the p = O Type IIb

problem when (kh)z = 0.001 and (~h)z = 0.0987.

Fig. 9. Same aa Fig. 8 for the spurious mode alone: Real part (top);
Imaginary part (bottom). Scale is 200 times that of Fig. 8.

with ~and.f both determined by the left BC’s (32a)

af=l (38a)

(W)2
Fig. 10. Relative error in $ for the p = 1 Type IIb problem.
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Fig. 11. Vector plot of the p = 1 Type IIb problem solution when
(kh)z = 0.001 and (Yh)z = 0.0987. The Real part is shown; the Imaginaiy
part is zero.

Use ofthe dispersion relation k2=C~u2 /A.+C~v2/Avrtnd

rearrangement gives

which approaches theexactvalue –~/awithmesh refinement.

As before, the relative error in (38c) with respect to the

analytic ~ is taken as a measure of accuracy of the discrete

solution when p = 1. This benchmark is plotted in Fig. 10 as

a function of (-Yh)z when (kh)2 is fixed as done previously.

Again, thediscrete solution isfaithfi,d to the analytic, showing

errors in the modal characteristic of less than 1 !ZO even for

marginally resolved values of (~h)2 in a fashion very similar

to the Type I problem. A vector plot of the p = 1 solution

for the case shown in Fig. 8 and 9 is provided in Fig. 11. The

computed results agree to better than 1’%0 with the analytic

solution for this specific parameter set.

Type IIa: In this case, we abandon the Dirichlet conditions

on the normal field and retain the one-sided approximations to

the normal Maxwell equations. To begin with, we apply this
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m,..— —

Fig. 12. Same as Fig. 4 for the Type IIa problem when p = O.

at the left boundary only, obtaining equation (39a), below;

and retain the previous Type IIb BC’s at the bottom. These

are perfect BC’S for both physical and spurious Type II

trigonometric modes.

The normal ($) equation at the left is identical to that

enforced in the Type I problem. Hence, the blend of physical

and spurious modes expressed in (27) is exactly the same!

Thus, the al/a2 ratio shown in Fig. 3 pertains to both Type I

and Type IIa problems. The actual a values dictated by the two

problems, however, are different. Fig. 12 shows the p = O

Type IIa problem solution for the same set of (~h)2 and

(kh)2 parameters used in Fig. 4. The parasitic mode is again

a significant fraction of the total solution having grossly

erroneous behavior similar to Fig. 4, but with different local

details.

For the special case p = 1, a single mode of the form (37)

is sufficient, and the normal (~) equation demands the same

relation for ~ as in the Type I problem, equation (31) which

has the same accuracy shown in Fig. 5. The tangential BC on

the left gives a

*

The product af is unity for the analytic solution. Fig. 13

reveals that (40) can be a gross distortion of this feature at

reasonable resolution. The left BC’S in this case are singular

for certain combinations of k2 and T2, at which point Q.f
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Fig. 13. a~ for the Type IIa p = 1 solution as a function of (Th)z. The

exact value is unity.
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Fig. 14. Same as Fig. 11 except Type IIa BC’S are enforced on the left

goes to infinity. For larger T2, a f becomes negative and the

field is wrong in both magnitude and direction. For complex

problems, this is a particularly bad feature, since the basic

waveform has the correct dispersion relation and mode shape

f. Fig. 14 displays. the p = 1 solution for the case reported in

Fig. 11, illustrating this point. Here, ~ f = – 1.5788.

Finally, consider the Type IIa BC at the bottom, equation

(39b) below.

The tangential (~) equation is transparent to the Type 11

trigonometric modes as above; it serves only to constrain the

ratio E. fEy for the Type I modes (which are required by

the left BC to vanish). The normal (y) equation is critical.

—
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It is transparent to the Type I modes, and overconstrains the

Type II modes. Specifically, it requires that both physical and

spurious modes independently satisfy a mode shape require-

ment $~ which is incompatible with the interior equations.

For p = O and after some manipulation, this is

( 2 2 –Azk2)
fy = ; ‘y (C;”gyc;

)

(41)
x

i

for both i = 1,2. But this conflicts with the interior equa-

tions which have already determined f 1 and f2. Each mode

therefore demands an additional parasite (al, 71 ) and (~2, 72)

in addition to the original parasite (al, T) and the physical

mode (02, T). These will be blended to meet the bottom

BC’S in a manner analogous to that used at the left. Further,

the additional spurious T1 and 72 in the system will create

imbalances in the left BC’S; each will demand an additional

parasitic mode; and so on. This basic conflict between f’” and

f is not improved with mesh refinement; for p = O, we have

(42)

which converges to 4/6. We see no simple closure of this

broadening spectrum of parasites.

For the case p = 1, the normal equation at the bottom can

be seen to be in direct conflict with the normal equation at the

left. For a Type II mode of the form (37), we have

(7BY ~2f==
(C&2 - AJ2)

6
)

–Az . (43) ,11
x

This is different from and incompatible with (31) which results

from the left normal BC, except in the limit of small h where
[2]

both converge to the same analytic value. For a finite mesh,

therefore, we find no solution for p = 1 with Type IIa BC’S.
[3]

double-curl form. The Type IIb condition, although seldom

used with the double-curl equation, retains the parasite even

though in the examples chosen here it is quite small. This

may represent a limited window of utility for the double-curl

method on Co elements.

By contrast, the Helmholtz solutions are of high quality

for Type I and IIb BC’S. These findings are consistent with

numerical experiments in [9] and in [8]. These papers deal

with two alternative Helmholtz forms which reduce to the

homogeneous form analyzed herein. In [3], we provide a very

general derivation of Helmholtz-like weak forms based in

gauge theory, which significantly broadens their foundation

and demonstrates the sufficiency of both Type I and IIb BC’S.

The Type IIa conditions should be avoided when using

the Helmholtz forms. This BC blend is shown herein to

overconstrain the Helmholtz system—effectively it demands

two slightly different and incompatible approximations to

V . E = O. This finding is compatible with the compu-

tational experience reported in [9]. A reexamination of the

problematic cases presented therein (Fig. 5 and 6) reveals

very ill-conditioned system matrices with Type IIa BC’S; and

a condition number reduction of order 103 for Type IIb BC’S.

These analyses indicate that simple node-based finite ele-

ments are capable of supporting robust, high-quality solutions

to Maxwell’s equations, provided the Helmholtz-type weak

forms are used with appropriate boundary conditions.

VI. DISCUSSION
[4]

We have analyzed in detail the imposition of boundary ,51

conditions on discrete finite element equations at mesh termi-

nations. Coupling these with previously obtained dispersion

relations on the interior allows closed-form solutions for
[6]

driven boundary value problems on simple meshes. We have

concentrated on node-based, Co elements because of their [7]

widespread use in other applications, and their well-known

ability to support spurious vector parasites. [8]

Relative to double-curl formulations, we concluded in [7]

that spurious modes would necessarily be required to satisfy [91

physical boundary conditions. The present analysis confirms

this in detail and quantifies the strength of the parasite. The

examples shown are reminiscent of numerical results reported ~an
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publication.
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the trigonometric modes into their exponential parts in order to accommodate William E. Boyse, photograph and biography not available at the time of

the one-sided discretization factors. publication.


